

Imaging for Translational Medicine

Paul M. Matthews

Head, GSK Clinical Imaging Centre, Hammersmith Hospital, London Professor of Clinical Neurosciences, Division of Neurosciences and Mental Health, Imperial College, London

paul.m.matthews@gsk.com

Clinical Imaging Centre

The GSK Clinical Imaging Centre: an experiment for translational medicine

- A facility operating at the academic-industry interface
- A mission to pursue advanced human imaging studies in the service of drug development and progression
- Facilities
 - ~4000 m² clinical, laboratory and office space
 - 3T MRI, 2 PET/CT, 2 cyclotrons radiochemistry and biology laboratories (supported by microPET)
 - Dedicated specialist IT environment
- People
 - 65 FTE including radiochemists, biologists, physicians, clinical scientists, physicists, nurses, radiographers, data analysts and operations staff
 - Seconded staff from GSK business partners
 - Academic collaborators, fellows and students

What is translational medicine?

 Biologically-driven therapeutics development involving hypothesis-led research performed across levels of biological complexity (e.g., cells to tissue preparation) or across species e.g., mouse to man)

- Accelerated testing of laboratory hypotheses in the clinic

What is translational medicine?

- Biologically-driven therapeutics development involving hypothesis-led research performed across levels of biological complexity (e.g., cells to tissue preparation) or across species e.g., mouse to man)
 - Accelerated testing of laboratory hypotheses in the clinic
- Outcomes are defined as clear answers from precise questions
 - This is not a search for a "clinically predictive" marker

What is translational medicine?

- Biologically-driven therapeutics development involving hypothesis-led research performed across levels of biological complexity (e.g., cells to tissue preparation) or across species e.g., mouse to man)
 - Accelerated testing of laboratory hypotheses in the clinic
- Outcomes are defined as clear answers from precise questions
 - This is not a search for a "clinically predictive" marker
- Bench-to-bedside and back again
 - Development and application of new technologies in a patientfocused environment
 - Testing of new concepts

Imaging for Translational Medicine should be contrasted with Diagnostic Imaging

- Diagnostic imaging is testing a general null hypothesis: is the image "normal"?
 - General priniciples
 - Validated approaches: evidence-based
 - Qualitative/categorical

Imaging for Translational Medicine should be contrasted with Diagnostic Imaging

- Diagnostic imaging is testing a general null hypothesis: is the image "normal"?
 - General priniciples
 - Validated approaches: evidence-based
 - Qualitative/categorical
- Imaging for translational medicine will test a specific hypothesisphysiological or pharmacological
 - Context-specific
 - Qualifying: building an evidence-base
 - Quantitative

Exploiting spatial and temporal scales for imaging

Direct translation of hypotheses

Chance and Williams, 1956

Direct translation of hypotheses

Direct translation of hypotheses

How can these approaches fundamentally change the way we can *think* about clinical trials?

- The large effect size of many imaging markers can shift us away from the need for conventional populationbased approaches
- Individual responses can be expressed with respect to Bayesian priors that model specific hypotheses
- Hypotheses can be tested by "falsifiability" or "futility" criteria on the basis of models and confidence intervals
- We can move away from the "tyranny of the p-value"

¹⁸F-fluoro-thymidine for oncology: probing malignant cell proliferation

¹⁸F-fluoro-thymidine for oncology: probing malignant cell proliferation

Thymidine turnover in cells

FLT trapping is an index of thymidine kinase activity: increased in S-phase

¹⁸F-fluoro-thymidine for oncology: probing malignant cell proliferation

Thymidine turnover in cells

FLT trapping is an index of thymidine kinase activity: increased in S-phase

Responder

Stratification:

Non-responder

Pharmacology in vivo: translating across species

Pharmacology in vivo: translating across species

PK/RO Model

Pharmacology in vivo: translating across species

The challenge

PK/RO Model

Exploiting the potential for understanding dynamics offered by non-invasive physiology

Hypothesis-led models to transform data into information

Individual PlasmaHomogeneous Tissue Kinetics

All normalized to 80% peak occupancy

Homogeneous PlasmaIndividual Tissue Kinetics

Individual PlasmaIndividual Tissue Kinetics

The challenge of developing PET molecular imaging probes: new partnerships, new tools

Serotonergic

- 5-HT1A
- 5-HT2A
- SERT

Dopaminergic

- D1
- D2
- DAT

Opioids

- µ-selective
- non-selective
- Sigma 1

Cannabinoids

• CB1

Histaminergic

• H1

Adrenergic

- β -adrenoceptor
- NET

Adenosine

- A1A
- A2A

- Nicotinergic
- α4β2
- Cholinergic
- BuChe
- Muscarinic
- M2
- non-selective
- Gabaergic
- GABA(A)

Inflammation/function

- PBR (TSPO)
- MAO-A
- MAO-B
- Degeneration
- amyloid plaques
- Transporters
- P-gp
- VMAT

The challenge of developing PET molecular imaging probes: new partnerships, new tools

Serotonergic

- 5-HT1A
- 5-HT2A
- SERT

Dopaminergic

- D1
- D2
- DAT
- Opioids
- µ-selective
- non-selective
- Sigma 1

Cannabinoids

• CB1

Histaminergic

• H1

Adrenergic

- β-adrenoceptor
- NET

Adenosine

- A1A
- A2A

Clinical Imaging Centre

Nicotinergic

- α4β2
- Cholinergic
- BuChe

Muscarinic

- M2
- non-selective
- Gabaergic
- GABA(A) Inflammation/function
- PBR (TSPO)
- MAO-A
- MAO-B

Degeneration

- amyloid plaques Transporters
- P-qp
- VMAT

Industry-led partnerships

Serotonergic

- 5-HT1B (Pfizer)
- 5-HT4 (GSK) 5-HT6 (GSK)
- Dopaminergic
- D3 ('GSK')
- Glutamatergic
- mGluR5 (Merck)
- GlyT1 (GSK/Merck) Histaminergic
- H3 (GSK)

Neurokinergic

- NK1 (GSK/Merck)
- Inflammation/function
- PDEIV ('GSK')

Future tools

- •"Click chemistry"
- Microfluidics
- •Biologicals

Bedside to bench and "the power of one"

Kwong et al. PNAS 89:5675-5679

Systems level analysis of brain modulation with a pharmacological challenge: a new translational medicine paradigm

Schwarz et al. NeuroImage **34**, 1627-1636 (2007)

Direct translation of the paradigm to humans

OFC

ACC

NAC

Vollm et al., 2005

Clinical Imaging Centre

Using "real time" physiology to relate physiology to behaviour

Heinz et al. Am J Psych 161 (2004) 1783

Using "real time" physiology to relate physiology to behaviour

Relating drug target interactions to systems-level response

Back to the bench: BOLD signal correlates with local field potential (LFP)- reflecting presynaptic changes

Clinical Imaging Centre

Logothetis Nature 453:869

BOLD as an integrated measure of information transfer

The scope of imaging should free the "translational medic "to ask questions *first* and then find the tools

Imaging for Translational Medicine: *in vivo* physiology and pharmacology

- Direct measures of biodistribution, target interaction
- Physiological hypothesis-based measures of PD
- Moving from PD to stratification
 - Susceptibility markers
 - Short-term markers related to response
- Developing new measures of response: enhancing precision, sensitivity
 - But moving away resolutely from a focus on "surrogates"

Challenges for Imaging in Translational Medicine

- Training
 - Emphasis on integration: thinking about molecules and systems
 - Moving from observational awe to hypothesis-testing
- Careers
 - Supporting (and advancing) scientists outside of traditional discipline focus
 - Encouraging intelligent "discipline hopping"
 - Transforming the model for science: effective work in collaborative groups
 - Advancement and tenure need to recognise *contributions* and break from old concepts of *independence*
 - Not just not reducing the penalties for this, but *incentivising*
- Funding
 - Moving out of a comfort zone: tt is easier to fund science accountably if it has clear borders
 - Striking a portfolio balance
- Evolution of the community that drives science
 - New partnerships between academia and industry
 - Making health research a central concern of healthcare

